\qquad

Section 13.6-14.2 Review

Brief Summary of 13.6-14.2 (see full summaries at the end of each section in the course textbook.)

- Use the figure below to create a table that describes conversion from rectangular (x, y, z) to cylindrical coordinates (r, θ, z) and vice versa.

- Use the figure below to create a table that describes conversion from rectangular (x, y, z) to spherical coordinates (ρ, θ, ϕ) and vice versa.

- Product rules:

$$
\text { Scalar times vector: } \frac{d}{d t}(f(t) \boldsymbol{r}(t))=
$$

\qquad
Dot product: $\frac{d}{d t}\left(\boldsymbol{r}_{\mathbf{1}}(t) \cdot \boldsymbol{r}_{\mathbf{2}}(t)\right)=$ \qquad -

Cross product: $\frac{d}{d t}\left(\boldsymbol{r}_{\mathbf{1}}(t) \times \boldsymbol{r}_{\mathbf{2}}(t)\right)=$ \qquad -.

- If $\boldsymbol{r}^{\prime}\left(t_{0}\right)$ is nonzero, then it points in the direction \qquad to the curve at \qquad . The tangent line at $\boldsymbol{r}\left(t_{0}\right)$ has vector parametrization \qquad .

Section 13.6 Additional Exercises

1. Describe the intersection of the horizontal plane $z=h$ and the hyperboloid $-x^{2}-9 y^{2}+25 z^{2}=1$. For which values of h is the intersection empty?

Section 13.7 Additional Exercises

1. Convert $\left(1, \frac{\pi}{2},-2\right)$ from cylindrical to rectangular coordinates.
2. Convert $(1, \sqrt{3}, 7)$ from rectangular to cylindrical coordinates.
3. Sketch the set $r=\sin \theta$ described in cylindrical coordinates.
4. Convert $\left(3,0, \frac{\pi}{2}\right)$ from spherical to rectangular coordinates.
5. Convert $(1,1,1)$ from rectangular to spherical coordinates.
6. Convert $(2,0,2)$ from cylindrical to spherical coordinates.

Section 14.1-14.2 Additional Exercises

1. The function $\boldsymbol{r}(t)=\langle\sin t, 0,4+\cos t\rangle$ traces a circle. Determine the radius, center, and plane containing the circle.

In Exercises 2-4, find a parametrization of the curve.
2. The vertical line passing through the point $(3,2,0)$.
3. The circle of radius 2 with center $(1,2,5)$ in a plane parallel to the $y z$-plane.
4. The intersection of the surfaces $y^{2}-z^{2}=x-2$, and $y^{2}+z^{2}=9$ using $t=y$ as the parameter.

In exercises 5-7, let $\boldsymbol{r}_{\mathbf{1}}(t)=\left\langle t^{2}, t^{3}, t\right\rangle$ and $\boldsymbol{r}_{\mathbf{2}}(t)=\left\langle e^{3 t}, e^{2 t}, e^{t}\right\rangle$.
5. Find $\boldsymbol{r}_{\mathbf{1}}^{\prime}(t)$
6. Find $\frac{d}{d t}\left(\boldsymbol{r}_{\mathbf{1}}(t) \cdot \boldsymbol{r}_{\mathbf{2}}(t)\right)$.
7. Find $\frac{d}{d t}\left(\boldsymbol{r}_{\mathbf{1}}(t) \times \boldsymbol{r}_{\mathbf{2}}(t)\right)$.
8. Calculate $\frac{d}{d t}\left(\boldsymbol{r} \times \boldsymbol{r}^{\prime}\right)$, where $\boldsymbol{r}(t)=\left\langle t, t^{2}, e^{t}\right\rangle$.

