Name:\_\_\_\_\_

## Section 13.6-14.2 Review

Brief Summary of 13.6-14.2 (see full summaries at the end of each section in the course textbook.)

• Use the figure below to create a table that describes conversion from rectangular (x, y, z) to cylindrical coordinates  $(r, \theta, z)$  and vice versa.



• Use the figure below to create a table that describes conversion from rectangular (x, y, z) to spherical coordinates  $(\rho, \theta, \phi)$  and vice versa.



• Product rules:

Scalar times vector: 
$$\frac{d}{dt}(f(t)\mathbf{r}(t)) =$$
\_\_\_\_\_.

Dot product: 
$$\frac{d}{dt}(\mathbf{r_1}(t) \cdot \mathbf{r_2}(t)) =$$
\_\_\_\_\_\_.

Cross product: 
$$\frac{d}{dt}(\mathbf{r_1}(t) \times \mathbf{r_2}(t)) =$$
\_\_\_\_\_\_

• If  $r'(t_0)$  is nonzero, then it points in the direction \_\_\_\_\_\_ to the curve at \_\_\_\_\_. The tangent line at  $r(t_0)$  has vector parametrization \_\_\_\_\_\_.

## Section 13.6 Additional Exercises

1. Describe the intersection of the horizontal plane z = h and the hyperboloid  $-x^2 - 9y^2 + 25z^2 = 1$ . For which values of h is the intersection empty?

## Section 13.7 Additional Exercises

- 1. Convert  $(1, \frac{\pi}{2}, -2)$  from cylindrical to rectangular coordinates.
- 2. Convert  $(1, \sqrt{3}, 7)$  from rectangular to cylindrical coordinates.
- 3. Sketch the set  $r = \sin \theta$  described in cylindrical coordinates.
- 4. Convert  $(3, 0, \frac{\pi}{2})$  from spherical to rectangular coordinates.
- 5. Convert (1, 1, 1) from rectangular to spherical coordinates.
- 6. Convert (2, 0, 2) from cylindrical to spherical coordinates.

## Section 14.1-14.2 Additional Exercises

1. The function  $\mathbf{r}(t) = \langle \sin t, 0, 4 + \cos t \rangle$  traces a circle. Determine the radius, center, and plane containing the circle.

In Exercises 2-4, find a parametrization of the curve.

2. The vertical line passing through the point (3, 2, 0).

- 3. The circle of radius 2 with center (1, 2, 5) in a plane parallel to the yz-plane.
- 4. The intersection of the surfaces  $y^2 z^2 = x 2$ , and  $y^2 + z^2 = 9$  using t = y as the parameter.

In exercises 5-7, let  $\mathbf{r_1}(t) = \langle t^2, t^3, t \rangle$  and  $\mathbf{r_2}(t) = \langle e^{3t}, e^{2t}, e^t \rangle$ .

5. Find  $r'_1(t)$ 

6. Find  $\frac{d}{dt}(\mathbf{r_1}(t) \cdot \mathbf{r_2}(t))$ .

7. Find  $\frac{d}{dt}(\mathbf{r_1}(t) \times \mathbf{r_2}(t))$ .

8. Calculate  $\frac{d}{dt}(\mathbf{r} \times \mathbf{r'})$ , where  $\mathbf{r}(t) = \langle t, t^2, e^t \rangle$ .